

Margaret Grove Series editor: Robert Yen **3RD EDITION**

Maths In Focus 11 Mathematics Extension 1 3rd Edition Margaret Grove

Publisher: Robert Yen and Alan Stewart Project editor: Anna Pang Editor: Elaine Cochrane Cover design: Chris Starr (MakeWork) Text design: Sarah Anderson Art direction: Danielle Maccarone and Aisling Gallagher Cover image: IStock.com/markgoddard Permissions researcher: Helen Mammides Production controller: Christine Fotis Typeset by: Cenveo Publisher Services

Any URLs contained in this publication were checked for currency during the production process. Note, however, that the publisher cannot vouch for the ongoing currency of URLs. © 2018 Cengage Learning Australia Pty Limited

Copyright Notice

This Work is copyright. No part of this Work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior written permission of the Publisher. Except as permitted under the Copyright Act 1968, for example any fair dealing for the purposes of private study, research, criticism or review, subject to certain limitations. These limitations include: Restricting the copying to a maximum of one chapter or 10% of this book, whichever is greater; providing an appropriate notice and warning with the copies of the Work disseminated; taking all reasonable steps to limit access to these copies to people authorised to receive these copies; ensuring you hold the appropriate Licences issued by the Copyright Agency Limited ("CAL"), supply a remuneration notice to CAL and pay any required fees. For details of CAL licences and remuneration notices please contact CAL at Level 11, 66 Goulburn Street, Sydney NSW 2000, Tel: (02) 9394 7600, Fax: (02) 9394 7601 Email: info@copyright.com.au Website: www.copyright.com.au

For product information and technology assistance, in Australia call **1300 790 853**; in New Zealand call **0800 449 725**

For permission to use material from this text or product, please email aust.permissions@cengage.com

National Library of Australia Cataloguing-in-Publication Data Grove, Margaret, author.

Maths in focus : year 11 mathematics extension 1 / Margaret Grove.

9780170413299 (paperback) For secondary school age

Mathematics--Problems, exercises, etc. Mathematics--Textbooks.

Cengage Learning Australia Level 7, 80 Dorcas Street South Melbourne, Victoria Australia 3205

Cengage Learning New Zealand Unit 4B Rosedale Office Park 331 Rosedale Road, Albany, North Shore 0632, NZ

For learning solutions, visit cengage.com.au

Printed in China by China Translation & Printing Services. 1 2 3 4 5 6 7 22 21 20 19 18

PREFACE

Maths in Focus 11 Mathematics Extension 1 has been rewritten for the new Mathematics Extension 1 syllabus (2017). In this 3rd edition of the book, teachers will find those familiar features that have made Maths in Focus a leading senior mathematics series, such as clear and abundant worked examples in plain English, comprehensive sets of graded exercises, chapter *Test Yourself* and *Challenge* exercises, Investigations, and practice sets of mixed revision and exam-style questions.

The Mathematics Extension 1 course is designed for students who intend to study mathematics at university, possibly majoring in the subject. This book covers the Year 11 content of the course, which includes the Year 11 Mathematics Advanced course. The specific Mathematics Extension 1 content is labelled **EXTI**. The theory follows a logical order, although some topics may be learned in any order. We have endeavoured to produce a practical text that captures the spirit of the course, providing relevant and meaningful applications of mathematics.

The *NelsonNet* student and teacher websites contain additional resources such as worksheets, video tutorials and topic tests. We wish all teachers and students using this book every success in embracing the new senior mathematics course.

ABUT THE AUTHOR

Margaret Grove has spent over 30 years teaching HSC Mathematics, most recently at Bankstown TAFE College. She has written numerous senior mathematics texts and study guides over the past 25 years, including the bestselling *Maths in Focus* series for Mathematics and Mathematics Extension 1.

Margaret thanks her family, especially her husband Geoff, for their support in writing this book.

CONTRIBUTING AUTHORS

Gaspare Carrozza and **Haroon Ha** from Homebush Boys High School wrote many of the *NelsonNet* worksheets.

Scott Smith and **Cherylanne Saywell** created the video tutorials.

Tania Eastcott and **Elizabeth Nabhan** wrote the topic tests.

Roger Walter wrote the *ExamView* questions.

Shane Scott, Brandon Pettis and **George Dimitriadis** wrote the worked solutions to all exercise sets.

CNTENTS

PREFACE	
SYLLABUS REFERENCE GRID viii	
ABOUT THIS BOOK	
STUDY SKILLS	
MATHEMATICAL VERBSxvii	

EXT1 = Mathematics Extension 1 content additional to Mathematics Advanced

* = Revision

ALG	EBRA	IC TECHNIQUES	2
F1.1	1.01	Index laws	4
F1.1	1.02	Zero and negative indices	7
F1.1	1.03	Fractional indices	9
*	1.04	Simplifying algebraic expressions	14
*	1.05	Expansion	16
*	1.06	Binomial products	17
*	1.07	Special products	18
*	1.08	Factorisation	19
*	1.09	Factorisation by grouping	
		in pairs	20
*	1.10	Factorising trinomials	21
*	1.11	Further trinomials	23
*	1.12	Perfect squares	24
*	1.13	Difference of two squares	25
*	1.14	Mixed factorisation	26
F1.1	1.15	Simplifying algebraic fractions	27
F1.1	1.16	Operations with algebraic	
		fractions	28
*	1.17	Substitution	30
F1.1	1.18	Simplifying surds	32

F1.1 1.19	Operations with surds	33
F1.1 1.20	Rationalising the denominator	36
Test yourself	1	41
Challenge e	xercise 1	45

EQUATIONS AND INEQUALITIES 46

*	2.01	Equations	48
*	2.02	Inequalities	51
F1.4	2.03	Absolute value	53
F1.4	2.04	Equations involving absolute values	56
E1.4	2.05	Exponential equations	58
*	2.06	Solving quadratic equations by factorisation	61
F1.1	2.07	Solving quadratic equations by completing the square	62
F1.1	2.08	Solving quadratic equations by quadratic formula	64
*	2.09	Formulas and equations	66
F1.3	2.10	Linear simultaneous equations	69
F1.3	2.11	Non-linear simultaneous equations	70
F1.3	2.12	Simultaneous equations with three unknown variables	72
F1.2	2.13	EXT1 Quadratic inequalities	74
F1.2	2.14	EXTI Inequalities involving the unknown in the denominator	.76
F1.2	2.15	EXT1 Inequalities involving absolute values	81
Test y	ourself	2	83
Chall	lenge e	xercise 2	85

PERMUTATIONS AND COMBINATIONS

A1.1 3.02	EXTI The pigeonhole principle94
A1.1 3.03	EXTI Factorial notation
A1.1 3.04	EXT1 Permutations103
A1.1 3.05	EXTI Combinations112
A1.2 3.06	EXTI Pascal's triangle and binomial coefficients119
Test yourself	3129
Challenge e	xercise 3 131

PRACTICE SET 1 13	2
-------------------	---

FUNCTIONS

F1.2	4.01	Functions	141
F1.2	4.02	Function notation	148
F1.2	4.03	Properties of functions	152
F1.3	4.04	Linear functions	159
C1.1	4.05	The gradient of a straight line	163
F1.3	4.06	Finding a linear equation	169
F1.3	4.07	Parallel and perpendicular	
		lines	173
F1.3	4.08	Quadratic functions	177
F1.3	4.09	Axis of symmetry	182
F1.2	4.10	EXT1 Quadratic inequalities	185
F1.3	4.11	The discriminant	187
F1.3	4.12	Finding a quadratic equation	192
F1.3	4.13	Cubic functions	196
F1.4	4.14	Polynomial functions	204
F1.3	4.15	Intersection of graphs	209
Test y	ourself 2	1	215
Chall	enge ex	ercise 4	220

86

138

TRIGONOMETRY

T1.1 5.01	Trigonometric ratios	. 226
T1.1 5.02	Finding a side of a right-angled triangle	. 232
T1.1 5.03	Finding an angle in a right-anglea triangle	d . 236
T1.1 5.04	Applications of trigonometry	. 240
T1.1 5.05	The sine rule	. 248
T1.1 5.06	The cosine rule	. 256
T1.1 5.07	Area of a triangle	. 260
T1.1 5.08	Mixed problems	. 263
T1.2 5.09	Radians	. 269
T1.2 5.10	Length of an arc	. 274
T1.2 5.11	Area of a sector	. 277
Test yourself	5	. 281
Challenge exercise 5		. 284

222

286

POLYNOMIALS AND INVERSE FUNCTIONS

F2.1 6.01	EXT1 Division of polynomials	288
F2.1 6.02	EXT1 Remainder and factor	
	theorems	292
F2.1 6.03	EXT1 Polynomial equations	300
F2.2 6.04	EXT1 Roots and coefficients of	
	polynomial equations	302
F2.2 6.05	EXT1 Graphing polynomial	
	functions	310
F2.2 6.06	EXT1 Multiple roots	316
F1.3 6.07	EXT1 The inverse of a function .	320
F1.3 6.08	EXT1 Graphing the inverse of	
	a function	322
F1.3 6.09	EXT1 Inverse functions	326
Test yourself	6	331
Challenge e	exercise 6	333
-		
PRACTICE S	FT 2	334

FURTHER	FUNCTIONS	346
F1.4 7.01	The hyperbola	348
F1.4 7.02	Absolute value functions	355
F1.4 7.03	Circles and semicircles	361
F1.4 7.04	Reflections of functions	366
F1.2 7.05	Combined and composite functions	372
F1.17.06	EXT1 Sums and products of functions	377
F1.17.07	EXT1 Reciprocal functions	381
F1.17.08	EXT1 Square root relations	388
F1.1 7.09	EXT1 Further absolute value functions	392
F1.47.10	EXTI Parametric equations of a function	398
Test yourself	7	406
Challenge e	xercise 7	409

8

INTRODUCTION TO CALCULUS 410

C1.2, 1.3	8.01	Gradient of a curve	.413
C1.1	8.02	Differentiability	. 421
C1.1-1.3	8.03	Differentiation from first principles	. 424
C1.3, 1.4	8.04	Short methods of differentiation	. 434
C1.4	8.05	Derivatives and indices	. 439
C1.4	8.06	Tangents and normals	. 441
C1.4	8.07	Chain rule	. 446
C1.4	8.08	Product rule	. 448
C1.4	8.09	Quotient rule	. 451
C1.4	8.10	Rates of change	. 453
C1.3	8.11	EXT1 Related rates of change	.458
C1.1	8.12	EXTI Motion in a straight line	. 463
F2.2	8.13	EXT1 Multiple roots of	
		polynomial equations	. 473
Test yourse	lf 8		. 477
Challenge	exercis	e 8	. 482

PROBABILITY

484

<mark>\$1.1</mark> 9.01	Set notation and Venn diagrams 486
<mark>\$1.1</mark> 9.02	Relative frequency
<mark>\$1.1</mark> 9.03	Theoretical probability
<mark>\$1.1</mark> 9.04	Addition rule of probability
<mark>\$1.1</mark> 9.05	Product rule of probability
<mark>\$1.1</mark> 9.06	Probability trees
<mark>\$1.1</mark> 9.07	Conditional probability 513
Test yourself	9
Challenge e	xercise 9525
PRACTICE S	ET 3526

vi

E1.3	10.02	Euler's number, e
E1.3	10.03	Differentiation of
		exponential functions 545
E1.1	10.04	Logarithms
E1.2	10.05	Logarithm laws556
E1.1-1.4	10.06	Logarithmic functions 561
E1.4	10.07	Exponential equations 567
C1.2	10.08	EXT1 Exponential growth
		and decay 570
C1.2	10.09	EXT1 Further exponential
		growth and decay579
Test yourse	lf 10	
Challenge	exercise	10

DISCRETE PROBABILITY DISTRIBUTIONS

DISTRIBUT	IONS	658
<mark>\$1.2</mark> 12.01	Random variables	660
\$1.2 12.02	Discrete probability distributions	
S1.2 12.03	Mean or expected value	
\$1.2 12.04	Variance and standard deviation	
Test yourself 1	2	687
Challenge exe	ercise 12	
PRACTICE SE	Τ 4	
ANSWERS		
INDEX		823

TRIGONOMETRIC FUNCTIONS 590

T1.2	11.01	Angles of any magnitude 592
T2	11.02	Trigonometric identities 599
T2	11.03	EXT1 Further trigonometric
		identities 605
T1.2, 2	11.04	Radians 619
T1.2, 2	11.05	Trigonometric functions624
T2	11.06	Trigonometric equations 635
T2	11.07	Applications of trigonometric
		functions
T1	11.08	EXT1 Inverse trigonometric
		functions
TI	11.09	EXT1 Properties of inverse
		trigonometric functions 645
Test you	rself 11	
Challen	ge exerci	se 11657

SYLLABUS REFERENCE GRID

Topic and subtopic	Maths in Focus 11 Mathematics Extension 1 chapter
FUNCTIONS	
MA-F1 Working with functions	
F1.1 Algebraic techniques F1.2 Introduction to functions	1 Algebraic techniques 2 Equations and inequalities
F1.3 Linear, quadratic and cubic functions F1.4 Further functions and relations	4 Functions 7 Further functions
EXIL ME-F1 Further work with functions	
F1.1 Graphical relationships F1.2 Inequalities F1.3 Inverse functions F1.4 Parametric form of a function or relation	 2 Equations and inequalities 4 Functions 6 Polynomials and inverse functions 7 Further functions
EXT1 ME-F2 Polynomials	
F2.1 Remainder and factor theorems F2.2 Sums and products of roots of polynomials	6 Polynomials and inverse functions 8 Introduction to calculus
TRIGONOMETRIC FUNCTIONS	
MA-T1 Trigonometry and measure of angles	
T1.1 Trigonometry T1.2 Radians	5 Trigonometry 11 Trigonometric functions
MA-T2 Trigonometric functions and identities	11 Trigonometric functions
ME-T1 Inverse trigonometric functions	11 Trigonometric functions
EXII ME-T2 Further trigonometric identities	11 Trigonometric functions
CALCULUS	
MA-C1 Introduction to differentiation	
C1.1 Gradients of tangentsC1.2 Difference quotientsC1.3 The derivative function and its graphC1.4 Calculating with derivatives	8 Introduction to calculus
EXII ME-C1 Rates of change	
C1.1 Rates of change with respect to time C1.2 Exponential growth and decay C1.3 Related rates of change	8 Introduction to calculus 10 Exponential and logarithmic functions
EXPONENTIAL AND LOGARITHMIC FUNCTIONS	
MA-E1 Logarithms and exponentials	
 E1.1 Introducing logarithms E1.2 Logarithmic laws and applications E1.3 The exponential function and natural logarithms E1.4 Graphs and applications of exponential and logarithmic functions 	I Exponential and logarithmic functions

MATHS IN FOCUS 11. Mathematics Extension 1

viii

Topic and subtopic	Maths in Focus 11 Mathematics Extension 1 chapter
STATISTICAL ANALYSIS	
MA-S1 Probability and discrete probability distributions	
S1.1 Probability and Venn diagrams	9 Probability
S1.2 Discrete probability distributions	12 Discrete probability distributions
COMBINATORICS	
EXII ME-A1 Working with combinatorics	
A1.1 Permutations and combinations	3 Permutations and combinations
A1.2 The binomial expansion and Pascal's triangle	

MATHS IN FOCUS AND NEW CENTURY MATHS 11-12

ix

ABOUT THIS BOK

AT THE BEGINNING OF EACH CHAPTER

• Each chapter begins on a double-page spread showing the **Chapter contents** and a list of chapter outcomes

• Terminology is a chapter glossary that previews the key words and phrases from within the chapter

a supported A line that a core a proceeden but more tracks. compariso function. A function of a function, where the engine of an efficient in the second set of the second set of the set of the second set of the second set of the set of the second set of the set of the second set of the second set of the set of the second set of the second set of the set o	hyperbolics. The graph of the formation $y - kx_s$, historic marking of Sagnaria curve, linearene variations. A relationship bartwan J variables use that as one variable increases, the distribution of the second second second second derivatives for other variable measure. Our variable is a multiple of the reciprocel of the other, with equation $y = \frac{1}{2}$. Also called interest properties. It is the equipment of the second second derivative in the equipment of the second second derivative in the equipment of the second second derivative in the equipment of the second second second derivative interest of the equipment of the second second derivative interest of the equipment of the second second derivative derivatives and the second					
7.01 The hyperbola						
Inverse variation						
We looked at direct variation and the equation inverse variation (or inverse proportion) with the reciprocal of the other. This means that as when one decreases, the other increases.	y = kr in Chapter 4. When one variable is in another variable, one is a constant multiple of one variable increases, the other decreases and					
For example:						
 The more slices you cut of a pizza, the smaller the size of each slice. 						
· The more workers there are on a project, t	he less time it takes to complete.					
· The fewer people sharing a house, the high	er the rent each person pays.					
Inverse variation If variables x and y are in inverse variation, c the constant of variation.	an write the equation $y = \frac{k}{x}$ where k is called					
EXAMPLE 1						
 Building a shed in 12 hours requires 3 h inverse variation to the amount of time, 	uilders. If the number of builders, N, is in t hours:					
i find the equation for N in terms of i						
ii find the number of builders it would	I take to build the shed in 9 hours					

IN EACH CHAPTER

- Important facts and formulas are highlighted in a shaded box.
- Important words and phrases are printed in red and listed in the Terminology chapter glossary.
- The specific Mathematics Extension 1 content is labelled EXTI.
- Graded exercises include exam-style problems and realistic applications.
- Worked solutions to all exercise questions are provided on the *NelsonNet* teacher website.
- **Investigations** explore the syllabus in more detail, providing ideas for modelling activities and assessment tasks.
- **Did you know?** contains interesting facts and applications of the mathematics learned in the chapter.

ketch the graph of y =	f(x) + g	(x) whe	re <i>f</i> (x) :	$= x^3 + 1$	I and g	$(x) = x^{2}$	- 2x -	- 3.			
olution											
fethod 1: Algebraic	method										
=f(x) + g(x)			For x-i	nterce	pts, y =	0:					
$=x^3 + 1 + x^2 - 2x - 3$ $0 = x^3 + x^2 - 2x - 2$											
$=x^{3}+x^{2}-2x-2$			$= x^{2}(x)$:+1)-	2(x +	1)					
			= (x +	$(x^2 - 1)(x^2 - 1)$	- 2)						
			x = -1,	3	² = 2						
					$x = \pm \sqrt{2}$	2					
$10 \ x = 100 \ r = 10 \ r = 10$											
$= 0^{3} + 0^{2} - 2(0) - 2 =$ $= x^{3} + x^{2} - 2x - 2 \text{ is a}$ metion with an odd d ositive leading coeffic raph points down on 1 ad up on the right end	-2. cubic egree ar ient, so the left 1.	ad a the end		42	-1	12	-	r.			
$e^{-3} + e^{-2} - 2(0) - 2 =$ $e^{-3} + e^{-2} - 2x - 2$ is a inection with an odd d ositive leading coeffic apph points down on the right end on the right end of the right e	-2. cubic egree ar ient, so the left 1. ould co	nd a the end mplete	a table	v2	 ues.	12	-	Ŧ			
$x^{2} = x^{2} + x^{2} - 2(0) - 2 = x^{3} + x^{2} - 2x - 2$ is a metion with an odd d ositive leading coeffic aph points down on the right end of the right end of the right end x or more detail, we c	-2. cubic egree ar ient, so the left 1. ould co	nd a the end mplete -3 26		√2 = of val		1	2	3	4		
$r = 0^{-1} + 0^{-2} - 2(y) - 2 =$ $= x^3 + x^2 - 2x - 2 is a metion with an odd a distive leading coeffic raph points down on the dup on the right end of the distinct leading of the distinct leading of the distinct leading and the distinct l$	-2. cubic egree ar ient, so the left l. ould co -4 -63 21	nd a the end mplete -3 -26 12	a table -2 -7 5	√2 of val −1 0 0		1 2 -4	2 9 -3	3 28 0	4 65 5		
$x' = \frac{x'}{f(x) - x'} + \frac{x'}{2x - 2}$ is a metion with an odd d solution of the form of the solution of the	-2. cubic egree ar ient, so the left of 1. ould co -4 -63 21 -42	nd a the end	a table -2 -7 5 -2	√2 of val -1 0 0 0	1 2 ues. 0 1 3 2	1 2 -4 -2	2 9 -3 6	3 28 0 28	4 65 5 60		

xi

AT THE END OF EACH CHAPTER

- Test Yourself contains chapter revision exercises.
- If you have trouble completing the *Test Yourself* exercises, you need to go back and revise the chapter before trying the exercises again.
- Challenge Exercise contains chapter extension questions. Attempt these only after you are confident with the *Test Yourself* exercises, because these are more difficult and are designed for students who understand the topic really well.
- **Practice sets** (after several chapters) provide a comprehensive variety of mixed exam-style questions from various chapters, including short-answer, free-response and multiple-choice questions.

AT THE END OF THE BOOK

• Answers and Index (worked solutions on the teacher website).

NELSONNET STUDENT WEBSITE

Margin icons link to print (PDF) and multimedia resources found on the *NelsonNet* student website, **www.nelsonnet.com.au**. These include:

- Worksheets and puzzle sheets that are write-in enabled PDFs
- Video tutorials: worked examples explained by 'flipped classroom' teachers
- ExamView quizzes: interactive and self-marking

7. TEST YOURSELF	
For Quasison 1 and 2, where the correct mover I 1. The domain of $p = -\frac{3}{n-4}$ is: A (-4) C ($-n$, -1) $-(4, -)$ 2. The equation of n circle with radius 3 and cert A ($n-1^2 + (r+2)^2 = 0$ C ($r-1^2 + (r+2)^2 = 0$ 3. The proposed $n = (r + 2)^2 = 0$	B $(-\infty, 4) \cup (4, -)$ D $(-\infty, 4) \cup (4, -)$ D $(-\infty, 4)$ B $(x + 1)^2 + (y - 2)^2 = 9$ D $(x + 1)^2 + (y - 2)^2 = 3$
The graph of γ - $f(-\alpha)$ is γ γ γ γ γ γ γ γ	•
(406) MATHS IN FOCUS 11. Mothematics Estimation 1	SAN 478217321209

Practice set 2
In Questions 1 to 12, select the correct answer A, B, C or D.
1 Find an expression involving θ for this triangle (there may be more than one answer).
$\mathbf{A} \cos \theta = \frac{5^2 + 4^2 - 7^2}{2 \times 5 \times 4} \qquad \qquad \mathbf{B} \frac{\sin \theta}{4} = \frac{\sin \alpha}{5}$
c $\frac{\sin \theta}{5} = \frac{\sin \alpha}{4}$ D $\cos \theta = \frac{5^2 + 7^2 - 4^2}{2 \times 5 \times 7}$
2 If $f(x) = \begin{cases} 8x^3 & \text{if } x > 3\\ 3x^2 - 2 & \text{if } 0 \le x \le 3 \text{ evaluate } f(3) + f(1) + f(-1).\\ 9 & \text{if } x < 0 \end{cases}$
A 35 B 226 C 233 D 53
3 The linear function with equation $4x - 2y + 3 = 0$ has:
A gradient -2 , y-intercept $-1\frac{1}{2}$ B gradient $\frac{1}{2}$, y-intercept $\frac{3}{4}$
C gradient 2, y-intercept 1 ¹ / ₂ D gradient 4, y-intercept 3.
4 For the quadratic function $y = ax^2 + bx + c > 0$ for all x :
A $a > 0, b = +ac > 0$ B $a < 0, b = +ac > 0$ C $a > 0, b^2 = +ac < 0$ D $a < 0, b^2 = +ac < 0$
334) MATHS IN FOCUS 11. Mathematics Extension 1 ISAN 9780170413299

NELSONNET TEACHER WEBSITE

The NelsonNet teacher website, also at www.nelsonnet.com.au, contains:

- A teaching program, in Microsoft Word and PDF formats
- Topic tests, in Microsoft Word and PDF formats
- Worked solutions to each exercise set
- Chapter PDFs of the textbook
- ExamView exam-writing software and questionbanks
- Resource Finder: search engine for NelsonNet resources

Note: Complimentary access to these resources is only available to teachers who use this book as a core educational resource in their classroom. Contact your Cengage Education Consultant for information about access codes and conditions.

NELSONNETBOOK

NelsonNetBook is the web-based interactive version of this book found on NelsonNet.

- To each page of NelsonNetBook you can add notes, voice and sound bites, highlighting, weblinks and bookmarks
- Zoom and Search functions
- Chapters can be customised for different groups of students

Xiii

STUDY SKILLS

The Year 11 course introduces the basics of topics such as calculus that are then applied in the Year 12 course. You will struggle in the HSC if you don't set yourself up to revise the Year 11 topics as you learn new Year 12 topics. Your teachers will be able to help you build up and manage good study habits. Here are a few hints to get you started. There is no right or wrong way to learn. Different styles of learning suit different people. There is also no magical number of hours a week that you should study, because this will be different for every student. But just listening in class and taking notes is not enough, especially when you are learning material that is totally new.

If a skill is not practised within the first 24 hours, up to 50% can be forgotten. If it is not practised within 72 hours, up to 85–90% can be forgotten! So it is really important that, whatever your study timetable, new work must be looked at soon after it is presented to you.

With a continual succession of new work to learn and retain, this is a challenge. But the good news is that you don't have to study for hours on end!

IN THE CLASSROOM

In order to remember, first you need to focus on what is being said and done.

According to an ancient proverb:

I hear and I forget I see and I remember I do and I understand.

If you chat to friends and just take notes without really paying attention, you aren't giving yourself a chance to remember anything and will have to study harder at home.

If you are unsure of something that the teacher has said, the chances are that others are also not sure. Asking questions and clarifying things will ultimately help you gain better results, especially in a subject like mathematics where much of the knowledge and skills depend on being able to understand the basics.

Learning is all about knowing what you know and what you don't know. Many students feel like they don't know anything, but it's surprising just how much they know already. Picking up the main concepts in class and not worrying too much about other less important parts can really help. The teacher can guide you on this.

Here are some pointers to get the best out of classroom learning:

- Take control and be responsible for your own learning
- Clear your head of other issues in the classroom
- Active, not passive, learning is more memorable
- Ask questions if you don't understand something

- Listen for cues from the teacher
- Look out for what are the main concepts.

Note-taking varies from class to class, but here are some general guidelines:

- Write legibly
- Use different colours to highlight important points or formulas
- Make notes in textbooks (using pencil if you don't own the textbook)
- Use highlighter pens to point out important points
- Summarise the main points
- If notes are scribbled, rewrite them at home.

AT HOME

You are responsible for your own learning and nobody else can tell you how best to study. Some people need more revision time than others, some study better in the mornings while others do better at night, and some can work at home while others prefer a library.

- Revise both new and older topics regularly
- Have a realistic timetable and be flexible
- Summarise the main points
- Revise when you are fresh and energetic
- Divide study time into smaller rather than longer chunks
- Study in a quiet environment
- Have a balanced life and don't forget to have fun!

If you are given exercises out of a textbook to do for homework, consider asking the teacher if you can leave some of them till later and use these for revision. It is not necessary to do every exercise at one sitting, and you learn better if you can spread these over time.

People use different learning styles to help them study. The more variety the better, and you will find some that help you more than others. Some people (around 35%) learn best visually, some (25%) learn best by hearing and others (40%) learn by doing.

- Summarise on cue cards or in a small notebook
- Use colourful posters
- Use mindmaps and diagrams
- Discuss work with a group of friends
- Read notes out aloud
- Make up songs and rhymes
- Exercise regularly
- Role-play teaching someone else

ASSESSMENT TASKS AND EXAMS

You will cope better in exams if you have practised doing sample exams under exam conditions. Regular revision will give you confidence, and if you feel well prepared this will help get rid of nerves in the exam. You will also cope better if you have had a reasonable night's sleep before the exam.

One of the biggest problems students have with exams is in timing. Make sure you don't spend too much time on questions you're unsure about, but work through and find questions you can do first.

Divide the time up into smaller chunks for each question and allow some extra time to go back to questions you couldn't do or finish. For example, in a 2-hour exam with 6 questions, allow around 15 minutes for each question. This will give an extra half hour at the end to tidy up and finish off questions.

- Read through and ensure you know how many questions there are
- Divide your time between questions with extra time at the end
- Don't spend too much time on one question
- Read each question carefully, underlining key words
- Show all working out, including diagrams and formulas
- Cross out mistakes with a single line so it can still be read
- Write legibly

AND FINALLY...

Study involves knowing what you don't know, and putting in a lot of time into concentrating on these areas. This is a positive way to learn. Rather than just saying, 'I can't do this', say instead, 'I can't do this yet', and use your teachers, friends, textbooks and other ways of finding out.

With the parts of the course that you do know, make sure you can remember these easily under exam pressure by putting in lots of practice.

Remember to look at new work:

today, tomorrow, in a week, in a month.

Some people hardly ever find time to study while others give up their outside lives to devote their time to study. The ideal situation is to balance study with other aspects of your life, including going out with friends, working, and keeping up with sport and other activities that you enjoy.

Good luck with your studies!

MATHEMATICAL VERBS

A glossary of 'doing words' commonly found in mathematics problems

analyse: study in detail the parts of a situation

apply: use knowledge or a procedure in a given situation

classify, identify: state the type, name or feature of an item or situation

comment: express an observation or opinion about a result

compare: show how two or more things are similar or different

construct: draw an accurate diagram

describe: state the features of a situation

estimate: make an educated guess for a number, measurement or solution, to find roughly or approximately

evaluate, calculate: find the value of a numerical expression, for example 3×8^2 or 4x + 1 when x = 5

expand: remove brackets in an algebraic expression, for example expanding 3(2y + 1) gives 6y + 3

explain: describe why or how

factorise: opposite to **expand,** to insert brackets by taking out a common factor, for example factorising 6y + 3 gives 3(2y + 1)

give reasons: show the rules or thinking used when solving a problem. *See also* **justify.**

hence find/prove: find an answer or prove a result using previous answers or information supplied

interpret: find meaning in a mathematical result

justify: give reasons or evidence to support your argument or conclusion. *See also* give reasons

rationalise: make rational, remove surds

show that, prove: (in questions where the answer is given) use calculation, procedure or reasoning to prove that an answer or result is true

simplify: give a result in its most basic, shortest, neatest form, for example simplifying a ratio or algebraic expression

sketch: draw a rough diagram that shows the general shape or ideas, less accurate than **construct**

solve: find the value(s) of an unknown pronumeral in an equation or inequality

substitute: replace a variable by a number and evaluate

verify: check that a solution or result is correct, usually by substituting back into the equation or referring back to the problem

write, state: give the answer, formula or result without showing any working or explanation (This usually means that the answer can be found mentally, or in one step)

+14.50)(-1.49)(+41.57)FUNCTIONS 31,246.04 24,413,84 26,275.3 27 (+270.78)(+7.62) (-21.87) 137 04 60.44 33.20 34274 (-55.90) (-60.01)0.20) 598.71 685.65 511.22

ALGEBRAIC TECHNIQUES

This chapter revises and extends the algebraic techniques that you will need for this course. These include indices, algebraic expressions, expansion, factorisation, algebraic fractions and surds.

CHAPTER OUTLINE

- 1.01 Index laws
- 1.02 Zero and negative indices
- 1.03 Fractional indices
- 1.04 Simplifying algebraic expressions
- 1.05 Expansion
- 1.06 Binomial products
- 1.07 Special products
- 1.08 Factorisation
- 1.09 Factorisation by grouping in pairs
- 1.10 Factorising trinomials
- 1.11 Further trinomials
- 1.12 Perfect squares
- 1.13 Difference of two squares
- 1.14 Mixed factorisation
- 1.15 Simplifying algebraic fractions
- 1.16 Operations with algebraic fractions
- 1.17 Substitution
- 1.18 Simplifying surds
- 1.19 Operations with surds
- 1.20 Rationalising the denominator

93.52 (-57.53)

+28.57)

n 54

143,653.64 (+0.68)

50.44

75.41 (-19.36)

(+18.08)

150,028.9 (+4,44)

726.98

4 556.61

IN THIS CHAPTER YOU WILL:

- identify and use index rules including fractional and negative indices
- simplify algebraic expressions
- remove grouping symbols including perfect squares and the difference of 2 squares
- factorise expressions including binomials and special factors
- simplify algebraic fractions
- use algebra to substitute into formulas
- simplify and use surds including rationalising the denominator

TERMINOLOGY

- **binomial**: A mathematical expression consisting of 2 terms; for example, x + 3 and 3x 1
- **binomial product**: The product of binomial expressions; for example, (x + 3)(2x 1)
- **expression**: A mathematical statement involving numbers, pronumerals and symbols; for example, 2x 3
- factor: A whole number that divides exactly into another number. For example, 4 is a factor of 28
- **factorise**: To write an expression as a product of its factors; that is, take out the highest common factor in an expression and place the rest in brackets. For example, 2y - 8 = 2(y - 4)
- **index**: The power or exponent of a number. For example, 2³ has a base number of 2 and an index of 3. The plural of index is **indices**

power: The index or exponent of a number. For example, 2^3 has a base number of 2 and a power of 3

root: A number that when multiplied by itself a given number of times equals another number. For example, $\sqrt{25} = 5$ because $5^2 = 25$

surd: A root that can't be simplified; for example, $\sqrt{3}$

term: A part of an expression containing pronumerals and/or numbers separated by an operation such as +, -, \times or \div . For example, in 2x - 3 the terms are 2x and 3

trinomial: An expression with 3 terms; for example, $3x^2 - 2x + 1$

Note: In 4^3 the 4 is called the base number and

the 3 is called the index or power.

1.01 Index laws

An **index** (or **power** or **exponent**) of a number shows how many times a number is multiplied by itself. A **root** of a number is the inverse of the power.

For example:

• $4^3 = 4 \times 4 \times 4 = 64$

- $\sqrt{36} = 6$ since $6^2 = 36$
- $\sqrt[3]{8} = 2$ since $2^3 = 8$
- $\sqrt[6]{64} = 2$ since $2^6 = 64$

There are some general laws that simplify calculations with indices. These laws work for any m and n, including fractions and negative numbers.

Index laws

$$a^{m} \times a^{n} = a^{m+n}$$
$$a^{m} \div a^{n} = a^{m-n}$$
$$(a^{m})^{n} = a^{mn}$$
$$(ab)^{n} = a^{n}b^{n}$$
$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

 $\overline{}$

EXAMPLE 1

Simplify:

a
$$m^9 \times m^7 \div m^2$$
 b $(2y^4)^3$

$$\frac{(y^6)^3 \times y^{-4}}{y^5}$$

Solution

a
$$m^9 \times m^7 \div m^2 = m^{9+7-2}$$

 $= m^{14}$
b $(2y^4)^3 = 2^3(y^4)^3$
 $= 2^3y^{4\times 3}$
 $= 8y^{12}$
c $\frac{(y^6)^3 \times y^{-4}}{y^5} = \frac{y^{18} \times y^{-4}}{y^5}$
 $= \frac{y^{18+(-4)}}{y^5}$
 $= \frac{y^{14+(-4)}}{y^5}$
 $= y^{14+5}$
 $= y^9$

Exercise 1.01 Index laws

1	Eva	luate without using a calc	ulato	or:		$(1)^3$
	a	$5^{3} \times 2^{2}$	b	$3^4 + 8^2$	с	$\left(\frac{1}{4}\right)^{2}$
	d	∛27	е	4√16		(4)
2	Eva	luate correct to 1 decimal	l plac	ce:		
	a	3.7^2	b	$1.06^{1.5}$	C	$2.3^{-0.2}$
	d	$\sqrt[3]{19}$	е	$\sqrt[3]{34.8 - 1.2 \times 43.1}$	f	$\frac{1}{\sqrt[3]{0.99+5.61}}$
3	Sim	plify:				
	a	$a^6 \times a^9 \times a^2$	b	$y^3 \times y^{-8} \times y^5$	C	$a^{-1} \times a^{-3}$
	d	$w^{\frac{1}{2}} \times w^{\frac{1}{2}}$	е	$x^6 \div x$	f	$p^3 \div p^{-7}$
	g	$\frac{y^{11}}{y^5}$	h	$(x^7)^3$	i	$(2x^5)^2$
	j	$(3y^{-2})^4$	k	$a^3 \times a^5 \div a^7$	I	$\left(\frac{x^2}{y^9}\right)^5$
	m	$\frac{w^6 \times w^7}{w^3}$	n	$\frac{p^2 \times (p^3)^4}{p^9}$	ο	$\frac{x^6 \div x^7}{x^2}$
	р	$\frac{a^2 \times (b^2)^6}{a^4 \times b^9}$	q	$\frac{(x^2)^{-3} \times (y^3)^2}{x^{-1} \times y^4}$		

4 Simplify:
a
$$x^5 \times x^9$$
b $a^{-1} \times a^{-6}$
c $\frac{m^7}{m^3}$
d $k^{13} \times k^6 \div k^9$
e $a^{-5} \times a^4 \times a^{-7}$
f $x^{\frac{2}{5}} \times x^{\frac{3}{5}}$
g $\frac{m^5 \times n^4}{m^4 \times n^2}$
h $\frac{p^{\frac{1}{2}} \times p^{\frac{1}{2}}}{p^2}$
i $(3x^{11})^2$
j $\frac{(x^4)^6}{x^3}$

5 Expand each expression and simplify where possible:

a
$$(pq^3)^5$$
 b $\left(\frac{a}{b}\right)^8$ **c** $\left(\frac{4a}{b^4}\right)^3$
d $(7a^5b)^2$ **e** $\frac{(2m^7)^3}{m^4}$ **f** $\frac{xy^3 \times (xy^2)^4}{xy}$
g $\frac{(2k^8)^4}{(6k^3)^3}$ **h** $(2y^5)^7 \times \frac{y^{12}}{8}$ **i** $\left(\frac{a^6 \times a^4}{a^{11}}\right)^{-3}$
j $\left(\frac{5xy^9}{x^8 \times y^3}\right)^3$
6 Evaluate a^3b^2 when $a = 2$ and $b = \frac{3}{4}$.
7 If $x = \frac{2}{3}$ and $y = \frac{1}{9}$, find the value of $\frac{x^3y^2}{xy^5}$.
8 If $a = \frac{1}{2}, b = \frac{1}{3}$ and $c = \frac{1}{4}$, evaluate $\frac{a^2b^3}{c^4}$ as a fraction.
9 a Simplify $\frac{a^{11}b^8}{a^8b^7}$.
b Hence evaluate $\frac{a^{11}b^8}{a^8b^7}$ as a fraction when $a = \frac{2}{5}$ and $b = \frac{5}{8}$.
10 a Simplify $\frac{b^5q^8r^4}{p^4q^6r^2}$.
b Hence evaluate $\frac{b^5q^8r^4}{p^4q^6r^2}$ as a fraction when $p = \frac{7}{8}, q = \frac{2}{3}$ and $r = \frac{3}{4}$.
11 Evaluate $(a^4)^3$ when $a = \left(\frac{2}{3}\right)^{\frac{1}{6}}$.
12 Evaluate $\frac{a^3b^6}{b^4}$ when $a = \frac{1}{2}$ and $b = \frac{2}{3}$.

13 Evaluate $\frac{x^4 y^7}{x^5 y^5}$ when $x = \frac{1}{3}$ and $y = \frac{2}{9}$. **14** Evaluate $\frac{k^{-5}}{k^{-9}}$ when $k = \frac{1}{3}$. **15** Evaluate $\frac{a^4 b^6}{a^3 (b^2)^2}$ when $a = \frac{3}{4}$ and $b = \frac{1}{9}$. **16** Evaluate $\frac{a^6 \times b^3}{a^5 \times b^2}$ as a fraction when $a = \frac{1}{9}$ and $b = \frac{3}{4}$.

1.02 Zero and negative indices

Zero and negative indices

$$x^0 = 1$$
$$c^{-n} = \frac{1}{x^n}$$

Э

EXAMPLE 2

- **a** Simplify $\left(\frac{ab^5c}{abc^4}\right)^0$.
- **b** Evaluate 2^{-3} .
- **c** Write in index form:

i
$$\frac{1}{x^2}$$
 ii $\frac{3}{x^5}$ **iii** $\frac{1}{5x}$ **iv** $\frac{1}{x+1}$

d Write a^{-3} without the negative index.

Solution

a
$$\left(\frac{ab^{5}c}{abc^{4}}\right)^{0} = 1$$

b $2^{-3} = \frac{1}{2^{3}}$
 $= \frac{1}{8}$
c i $\frac{1}{x^{2}} = x^{-2}$
ii $\frac{3}{x^{5}} = 3 \times \frac{1}{x^{5}}$
 $= 3x^{-5}$

iii
$$\frac{1}{5x} = \frac{1}{5} \times \frac{1}{x}$$

 $= \frac{1}{5}x^{-1}$
iv $\frac{1}{x+1} = \frac{1}{(x+1)^1}$
 $= (x+1)^{-1}$
d $a^{-3} = \frac{1}{a^3}$

Exercise 1.02 Zero and negative indices

- **1** Evaluate as a fraction or whole number:
- i 7^{-1} i 9^{-2} n 6^{-2} o 5^{-3} s 8^{-2} **d** 10⁻⁴ 4^{-1} 3-3 b 7^{-3} a **h** 3^{-4} **m** 4^{0} 6^{0} **g** 2^{-5} **I** 3^{-2} f 2^{-6} k **q** 2^{-7} **r** 2^0 10^{-5} р **2** Evaluate: **b** $\left(\frac{1}{2}\right)^{-4}$ **c** $\left(\frac{2}{3}\right)^{-1}$ **d** $\left(\frac{5}{6}\right)^{-2}$ **e** $\left(\frac{x+2y}{3x-y}\right)^{0}$ 2^{0} a **f** $\left(\frac{1}{5}\right)^{-3}$ **g** $\left(\frac{3}{4}\right)^{-1}$ **h** $\left(\frac{1}{7}\right)^{-2}$ **i** $\left(\frac{2}{3}\right)^{-3}$ **j** $\left(\frac{1}{2}\right)^{-5}$ $\mathbf{k} \quad \left(\frac{3}{7}\right)^{-1} \qquad \mathbf{l} \quad \left(\frac{8}{9}\right)^0 \qquad \mathbf{m} \quad \left(\frac{6}{7}\right)^{-2} \qquad \mathbf{n} \quad \left(\frac{9}{10}\right)^{-2} \qquad \mathbf{o} \quad \left(\frac{6}{11}\right)^0$ **p** $\left(-\frac{1}{4}\right)^{-2}$ **q** $\left(-\frac{2}{5}\right)^{-3}$ **r** $\left(-3\frac{2}{7}\right)^{-1}$ **s** $\left(-\frac{3}{8}\right)^{0}$ **t** $\left(-1\frac{1}{4}\right)^{-2}$
- **3** Change into index form:

a	$\frac{1}{m^3}$	b	$\frac{1}{x}$	c	$\frac{1}{p^7}$	d	$\frac{1}{d^9}$	е	$\frac{1}{k^5}$
f	$\frac{1}{x^2}$	g	$\frac{2}{x^4}$	h	$\frac{3}{y^2}$	i	$\frac{1}{2z^6}$	j	$\frac{3}{5t^8}$
k	$\frac{2}{7x}$	I	$\frac{5}{2m^6}$	m	$\frac{2}{3y^7}$	n	$\frac{1}{\left(3x+4\right)^2}$	0	$\frac{1}{\left(a+b\right)^8}$
р	$\frac{1}{x-2}$	q	$\frac{1}{\left(5p+1\right)^3}$	r	$\frac{2}{\left(4t-9\right)^5}$	S	$\frac{1}{4(x+1)^{11}}$	t	$\frac{5}{9(a+3b)^7}$

4 Write without negative indices:

a
$$t^{-5}$$
 b x^{-6} **c** y^{-3} **d** n^{-8} **e** w^{-10}
f $2x^{-1}$ **g** $3m^{-4}$ **h** $5x^{-7}$ **i** $(2x)^{-3}$ **j** $(4n)^{-1}$
k $(x+1)^{-6}$ **l** $(8y+z)^{-1}$ **m** $(k-3)^{-2}$ **n** $(3x+2y)^{-9}$ **o** $\left(\frac{1}{x}\right)^{-5}$
p $\left(\frac{1}{y}\right)^{-10}$ **q** $\left(\frac{2}{p}\right)^{-1}$ **r** $\left(\frac{1}{a+b}\right)^{-2}$ **s** $\left(\frac{x+y}{x-y}\right)^{-1}$ **t** $\left(\frac{2w-z}{3x+y}\right)^{-7}$

1.03 Fractional indices

INVESTIGATION

FRACTIONAL INDICES

Consider the following examples.

$$\begin{pmatrix} \left(x^{\frac{1}{2}}\right)^{2} = x^{1} \text{ (by index laws)} & \left(\sqrt{x}\right)^{2} = x \\ = x & \text{So}\left(x^{\frac{1}{2}}\right)^{2} = \left(\sqrt{x}\right)^{2} \\ = x \\ \therefore \quad x^{\frac{1}{2}} = \sqrt{x} & \text{Now simplify these expressions.} \\ \mathbf{1} \quad \left(x^{2}\right)^{\frac{1}{2}} \quad \mathbf{2} \quad \sqrt{x^{2}} \quad \mathbf{3} \quad \left(x^{\frac{1}{3}}\right)^{3} \quad \mathbf{4} \quad \left(x^{3}\right)^{\frac{1}{3}} \quad \mathbf{5} \quad \left(\sqrt[3]{x}\right)^{3} \\ \mathbf{6} \quad \sqrt[3]{x^{3}} \quad \mathbf{7} \quad \left(x^{\frac{1}{4}}\right)^{4} \quad \mathbf{8} \quad \left(x^{4}\right)^{\frac{1}{4}} \quad \mathbf{9} \quad \left(\sqrt[4]{x}\right)^{4} \quad \mathbf{10} \quad \sqrt[4]{x^{4}} \\ \text{Use your results to complete:} \\ x^{\frac{1}{n}} = & \end{bmatrix}$$